Proposed Burlington Quarry Expansion **JART COMMENT SUMMARY TABLE – Air Quality**

Please accept the following as feedback from the Burlington Quarry Joint Agency Review Team (JART). Fully addressing each comment below will help expedite the potential for resolutions of the consolidated JART objections and individual agency objections. Additional, new comments may be provided once a response has been prepared to the comments raised below and additional information provided.

	JART Comments (February	Reference	Source of Comment	Applicant Response (July 2021)	JART Response (January 2022)	Applicant Response (January 2022)	JART Response (June 2023)
	2021)						
Re	eport/Date: Air Quality Study, March 2020		Author: E	BCX Environmental Consulting			
1.	Their analysis limited the computed air quality impacts by breaking the project up into smaller segments (phases) which were each evaluated separately. The BCX report should clearly indicate whether any of the phases will overlap.	General	Gray Sky Solutions	No, the phases will not overlap.	Comment addressed.		
2.	The dispersion model receptors were restricted to areas immediately surrounding the facility and did not include any receptors at distances further away from the facility, including areas of larger population (and exposure). Most of the larger computed impacts were fairly close to the sources, however it would be useful to also have estimated impacts in a larger geographical area. The modelled receptors should include a broader geographic area, extending to at least 5.0 kilometers from the facility.	General	Gray Sky Solutions	 Typically the study area for an air quality study for an aggregate quarry is 1km because the highest concentrations fall close to the property line. For this study, BCX conservatively chose approximately a 3km study area to demonstrate to residents in the vicinity of the quarry that air quality criteria will be met. Within the 3km, the highest concentrations occur at the closer receptors to the quarry and are below the air quality criteria. At 5km the concentrations are lower and will still be below the air quality criteria. At 5km, the quarry has little or no impact on air quality at 5km) The air quality study is not intended to be a risk assessment/population are below the area for an area for a for	Comment addressed.		

3.	The analysis appears to include a fairly thorough inventory	General	Gray Sky	US EPA AP-42 emission	The US EPA AP-42 emissions	The
	of all the various emission- generating activities in each		Solutions	factors are standardly	factors may, in fact, be accepted by	in th
	phase, however they relied almost entirely on US EPA AP-			accepted by the Ontario	the Ontario Ministry of the	rang
	42 emission factors, many of which have very low data			Ministry of the Environment,	Environment, Conservation and	ratin
	quality ratings, and some of which are not directly applicable			Conservation and Parks	Parks (Ministry), however that	aver
	to the source in question at the proposed facility.			(Ministry) for air quality studies	doesn't mean that the emission	as in
	The AP-42 document makes it very clear that these lower			and Environmental	factors are applicable to this quarry	
	rated emission factors should only be used as a last resort.			Compliance Approvals (ECAs)	or even marginally accurate. Within	всх
	and it is highly recommended that source-specific emission			for aggregate sites.	the documentation (appendices)	cont
	factors should be sought either from source testing at the				provided in AP-42 is important	qual
	facility or from directly applicable source tests from similar			The key to using these	information regarding the sources	arou
	nearby sources. Although there may not be are any better			emission factors is to ensure	of the data that were used to	tho r
	(textbook) or more recent data sources for some of these			that the emission scenarios	develop the emissions factors	ava)
	activities many of the AP-12 emission factors were obtained			assessed are conservative	including ranges of values that were	avy
	from vorviold sources (over 40 years old) and are only			(i.e. they represent maximum	obtained from source tests at	data
	morginally related to the activities at the proposed Purlington				various sources. These data could	uala
	site. Using such low quality omission factors will likely result				be used to evaluate the potential	appi
	in significantly large upportainties in the modeled air quality			For this study, the	be used to evaluate the potential	doto
				For this study, the	ha appropriate for the success and	uala
	impacts. A range of potential emission levels (and exposures)				be appropriate for the quarry and	cons
	should be developed based on lower and upper bound			assumptions were	could therefore be used to develop	the F
	emissions factors (which generally exist in AP-42 and its			made:	an analysis of the uncertainty of the	moa
	supporting documents). A careful review of each of the				emissions factors and the resulting	prea
	emissions factors used in the BCX analysis should be			1. All operations were	uncertainty of the modeling results	PIM2
	conducted to determine those emission factors that are not			assumed to occur	(which may be considerable) that	L.
	representative of actual emission levels at the proposed site,			simultaneously at	were obtained using the AP-42	Plea
	and the potential errors (and possible underprediction) due to			their maximum rates	emissions factors. An uncertainty	for d
	the use of the emission factors to estimate emission levels.				analysis would provide a range of	
	Source testing of existing operations at the facility should			limited In reality this	potential air quality concentration	Whil
	also be conducted where applicable.			will not occur	impacts, rather than a single	obta
				2 Truck	estimate of the impacts.	som
	The SO ₂ emission factors that were used for diesel-fired					such
	engines are rated (in AP-42) as quality D (marginal), and the			used were	AP-42 clearly states that those	testi
	B(a)P emissions factors for diesel engines are rated E				emissions factors that are rated as	such
	(marginal). The emission factors for Sand and Gravel			conservativ	marginal in quality should only be	simp
	processing were obtained from AP-42, Section 11.19.2				used as a last resort, if no local or	Furth
	(mistakenly quoted in BCX Appendix B as Section 11.9.2),			e. 3 Accumed all NOv	site- specific data are available.	testi
	where it is stated that "The emission factors for industrial sand			5. Assumed all NOX	The quarry has been operating for	Mini
	storage and screening presented in Table 11.19.1-1 are not				a number of years, and site-specific	Marg
	recommended as surrogates for construction sand and gravel			converted to NO2 (i.e.	source test data could have easily	Obta
	processing, because they are based on emissions from dried				been obtained that would provide	appr
	sand and may result in overestimates of emissions from those			methods (OLIVI) were	better emission factor estimates	unde
	sources. Construction sand and gravel are processed at much			not used).	than those from AP- 42.	Minis
	higher moisture contents." PM emission factors for controlled			4. vvet/dry depletion		reso
	tertiary crushing and controlled and uncontrolled screening			options were not used	The list of reasons that were	com
	were taken from AP-42. Section 11.19.2. and are all rated E			in modelling.	provided that purportedly provide	not f
	(marginal) As stated in AP-42 (Section 11 19 2 2) "Factors			5. Met anomalies were	evidence that the estimated air	Stud
	affecting emissions from either source category [stone			not removed as is	quality impacts were "conservative"	
	quarrying or processing include the stone size distribution			permitted by the	do not include any consideration of	As p
	and the surface moisture content of the stone processed, the			Ministry.	the emission factors that are the	emis
	process throughout rate, the type of equipment and operating			6. Conservative	most important component of the	cons
	practices used and topographical and climatic factors " PM			background	emissions estimates	and
	emission factors for conveyor transfers and rock truck			concentrations were		norm
	unloading were also taken from $\Delta P_{-1/2}$ (Section 11.10.2) and			added to the maximum		done
	are all rated E (marginal). Estimates of omission rates using			concentrations at		Stud
	α is an initial α (marginal). Estimates of emission factors from AP-42 that are rated D or E cannot be			sensitive receptors.		com
	considered reliable for the Burlington Quarry facility					in O
	concerned to actor the burnington adding fublicy.			Based on this,		
				emission estimates		
				are expected to be		

conservative.

e AQS contains a ge of data quality ngs (above average, mplied only marginal.

analysed the lity rated emission concentration. The quality group is roximately 38%. If the quality group is servatively doubled, PM2.5 (24hr avg) lelling result is still licted to be below the

details.

e emission sources n as stacks, source ng of fugitive sources n as crushers is not a ole task as implied. ing that has not been stry approved is rated ginal or Uncertain. aining Ministry ertaking and the stry only uses their ources for regulatory pliance purposes (i.e. for general Air Quality dies).

previously stated, the ssion estimates were servatively developed are consistent with nal practices for both eral Air Quality dies and regulatory pliance assessments ntario.

emission factors used BCX examined the emission factors that were used to develop emission rate estimates which had marginal ratings. They stated that the rage, marginal) and not, contribution of the sources in which marginal emission factors were used accounted for 38% of the total modeled PM_{2.5} concentration (maximum 24-hour tribution of various data average). An attached table shows their calculation in which they identified ups to the receptor with three sources for which marginal maximum PM2.5 (24hr emission factors were used (PTOS_QA, PTOS_QE, and BH-HMA). tribution of the marginal The table shows the modeled maximum 24-hour PM_{2.5} concentration at the maximum impacted receptor tribution of the marginal location. From their modeling files, I was able to determine that the modeled maximum 24-hour PM_{2.5} concentration (3.63 μ g/m³) occurred at receptor (UTM: 590803.61, 4806333.49) on December 2, 2017 2.5 (24hr avg) criterion. (using the variable hourly emissions) modeling scenario for morning truck ase see attached sheets trip emissions from sources

PTOS QAV and PTOS_QEV, identified as Scenario 2 in the le it may be feasible to discussion of Issue No. 7, below). The ain source test data for table shows the maximum 24-hour PM_{2.5} concentration and the data quality rating used for nine modeled sources, however it is noted that the maximum concentration for each source may not (and, in fact, does not) her, in Ontario, source occur on the same day (nor at the same location) as the modeled maximum 24-hour average PM_{2.5} concentration for all sources.

The maximum 24-hour average PM_{2.5} roved data is significant concentrations for the nine modeled sources do not match the provided modeling output file. The source PTOSHMAV was included in their list (with a non-zero $PM_{2.5}$ contribution) despite the fact that emissions for that source were modeled with zero emissions. In addition, three of the modeled POINT sources (GEN1_QEX, GEN2 QEX, and GEN HMA), which had non-zero modeled emissions, were not included in their list of sources (and no information on the data quality for these sources is included).

> I recalculated the fractional contribution from the sources with marginally rated emission factors to the maximum 24hour PM_{2.5} concentration using the modeling results (from Scenario 2, as described in Issue No. 7 below) as

+.	Anthough the estimated (nodeled) levels of particulate matter (PM) were below acceptable "air quality criteria", there are still potential health effects (mortality and morbidity risk) associated with the emitted PM and these additional risks should be evaluated.	General	Solutions	 relies on air quality study (AQS) relies on air quality standards set by the province or Environment Canada where provincial standards are not available. This AQS considers the health effects of PM by comparing PM2.5 modelled concentrations against the Canadian Ambient Air Quality Standards (CAAQS). The PM2.5 standards have been set by the Canadian Council of Ministers of the Environment (CCME) to be protective of health. The assessment very conservatively compares the maximum 24-hour and annual concentrations to the CAAQS which are in fact based on a 3-year average of the annual 98th percentile of the daily 24-hour average concentrations and 3-year average of the annual average of the daily 24-hour average concentrations, respectively. The maximum concentrations of PM2.5 at the property line and at all sensitive receptors are below the CAAQS. The AQS is not intended to be a risk assessment. 	
----	---	---------	-----------	--	--

5.	The background level for B(a)P was obtained from monitoring data collected at Newmarket and Simcoe (Barrie), which are located 78.0 kilometres and 109.0 kilometres, respectively, from the Nelson quarry, and are likely not representative of the air quality in the vicinity of the quarry. Further analysis of these data needs to be performed to justify their use in establishing background B(a)P levels, including potentially collecting local B(a)P data to determine background B(a)P levels.	General	Gray Sky Solutions	The background level for B(a)P was obtained from the Simcoe National Air Pollution Surveillance (NAPS) ambient monitoring station located in the township of Simcoe (not Barrie) approximately 65km southwest of the Nelson Quarry. This station is located in a reasonably similar rural/suburban location to the site. Air quality studies (AQS) in Ontario rely on background data from ambient stations and this AQS follows the accepted approach in Ontario. B(a)P data is also available from one closer ambient monitoring station, the Toronto West MECP ambient monitoring station (approximately 50km away). This station is within the City of Toronto adjacent to a major highway. A comparison of the B(a)P data from both stations shows that the background levels are similar. The background chosen is, therefore, considered representative and fairly consistent across Ontario.	Comment addressed.

6.	The meteorological preprocessor for the AERMOD model (AERMET) has been updated (in 2011) to include a separate processing tool (AERMINUTE) that is recommended to be used to account for calm wind speeds when using hourly wind data from nearby airports. The BCX report should indicate where the meteorological data were obtained (and assess whether it is close enough to reliably represent conditions at the Burlington site), and whether one-minute (ASOS) wind data were used to reduce the number of calm winds (using AERMINUTE). The AERMOD computer files that were received do not include the AERMET processing files.	General	Gray Sky Solutions	The regulatory body, Ontario Ministry of the Environment, Conservation and Parks (Ministry) processed the surface and upper meteorological data using AERMET to develop an AERMOD ready site- specific met set to be used for this site. The Ministry has their own procedure to treat calm hours from the met data set. The Ministry does not include the AERMET processing files when they provide the AERMOD ready site- specific met set.	Comment addressed.		
7.	The BCX modeling report indicates that the traffic was represented in the modeling using a "typical shipping" assumption. However the traffic report for the proposed quarry extension (Paradigm Transportation Solutions Limited, report dated February 2020) indicates that "the site's the weekday AM peak hour truck generation is forecast to be 111 truck trips", which is significantly greater than the average daily truck traffic and would therefore generate much higher emissions during morning hours. The modeling therefore needs to include a non-uniform diurnal distribution of traffic emissions that includes the peak AM traffic density.	General	Gray Sky Solutions	 Per the Traffic Study (Feb 2020), 111 truck trips means 56 inbound and 55 outbound trips (i.e. one-way trips). Trucks/day or trucks/hr in the Air Quality Study (AQS) means a two-way round trip of those trucks for the purposes of emission estimates. 111 truck trips will be equivalent to 56 trucks/hr in the AQS. Using a 24-hr average emission rate is an acceptable method per the Ministry guidance documents for contaminants with 24-hr average standards such as PM2.5. For this AQS, the daily truck emission rate (daily truck traffic emissions over 24 hrs is assumed to occur equally over 24 hrs. Since, dispersion is typically poor at night and truck traffic will be minimal at night, this approach will result in a similar or more conservative 24-hr average concentration than if a non-uniform diurnal distribution of traffic emissions was assumed. Furthermore, daily trucks entering the site assumed in the air quality study was 469 to 681(trucks/day depending on the month), which is very conservative compared to the approximate equivalent of 400 trucks per day in the traffic study. 	It is a fairly simple task to include a diurnal profile of emissions in the AERMOD model to address the non- uniform distributions of hourly truck traffic. Although (as the MHBC response states) dispersion is typically poor at night (resulting in higher concentration impacts per truck trip for those hours), dispersion is also often poor in the early morning hours which would potentially increase the impacts significantly during those hours when peak traffic densities are expected to occur. The modeling needs to be revised to account for the peak hourly truck traffic (111 trips per hour).	As requested, the maximum hourly trucking of 112 truck trips per hour were updated in the calculation sheets. BCX confirmed with the Traffic Study consultant that the AM Peak hour does not mean maximum trucks entering the quarry at that specific hour. The AM Peak Hour per the traffic study means the maximum car and trucks on the public road. (e.g. rush hour traffic) The maximum hourly trucking distribution is attached. Maximum hourly trucks actually occur in the 8am to 3pm time range. Notwithstanding, BCX tested the sensitivity of trucking variable emissions for PM2.5 (24hr) in AERMOD for two scenarios: 1. Peak hourly traffic was very conservatively concentrated into morning hours as requested. 2. Actual expected truck distribution per hour as provided in Appendix B of the Traffic Study. Modelling results PM2.5 (24hr) shows that there would be negligible change and that the AQS conclusions remain unchanged (i.e. PM2.5 24-hr avg concentrations remain below the criteria)	Examination of the AERMOD modeling input files shows the two different scenarios that were run by BCX to include the diurnal profile of trucking emissions: Scenario 1, using constant (maximum hourly) emissions during all morning hours, and Scenario 2, using expected "actual" emissions for each hour (as provided in Appendix B of the Traffic Study). In the latest BCX response, there is an attached table showing the factors (multipliers) that were used to scale the hourly emissions for Scenario 1 (which match the factors used in the AERMOD input control file for sources PTOS_QAV and PTOS_QEV). A factor of 1.0 was used for hours 6 through 12 representing 112 truck trips for each hour, and a factor of 0.082 was used for hour 13, which was obtained by dividing the 70 truck trips for that hour by 854 (total daily truck trips). The hour 13 multiplier appears to be incorrect; if the truck trips during that hour were 70, the hourly emissions scaling factor should be 70/112 = 0.625 (not 0.082). The 24 hourly emission scaling factors used in the

The AQS assumption Plate containing with 1-th overage and standards (e.g., As a Winogath Chuds (NO2)), an As a Winogath Chuds (NO2), an Boo Bio (NO2), an Bio Bio (NO2), an Bio	The AQS assumption Pleided attandards (a.g., Nillogian, Dioxide, 10(2)), and attandards (a.g., Nillogian, Dioxide, 10(2)), and month, The AQS 67 to 84 Dioxide trucks/hour (acguardiaton) to Bro-Zat 58 dock-2-168 truck that highs in the Traffic Study. The the constraints of the AQS 67 to 84 Dioxide trucks/hour (acguardiaton) to Bro-Zat 58 dock-2-168 truck that highs in the Traffic Study. The the AQS did not use a "typical stipping" assemption the AQS did not use a "typical stipping" assemption assumption. The AQS did not use a "typical stipping" assemption the AQS did not use a shipping assumption. BCX worked in constraints with Planardian Transportation Stavare of the constraints ware of the constraints assumption: to be conservative.				
				The AQS assumed for contaminants with 1-hr average standards (e.g. Nitrogen Dioxide (NO2)), an hourly truck rate of 67 to 84 trucks/hour (depending on month). The AQS 67 to 84 trucks/hour is equivalent to 67x2=134 to 84x2=168 truck trips in the Traffic Study. The hourly truck number used for the AQS is much higher than the 111 truck trips (peak hour) in the Traffic Study. The AQS did not use a "typical shipping" assumption and used a very conservative worst case shipping assumption. BCX worked in collaboration with Paradigm Transportation Solutions Limited and was aware of the conservative AQS truck assumptions compared to the traffic study. BCX purposely kept the theoretical worst case assumptions to be conservative.	Plea and As a pave Dio modula traffic not the

ase see attached sheets modeling for sources modelling file for details. PTOS QAV and PTOS_QEV were: Scenario 1: 0.0 0.0 0.0 0.0 explained in the previous BCX ponse, contaminants with 1-hr 0.0 1.0 1.0 1.0 1.0 1.0 1.0 rage standards (e.g. Nitrogen 1.0 xide (NO2)) have already been 0.082 0.0 0.0 0.0 0.0 0.0 0.0 0.0 delled conservatively using more 0.0 0.0 0.0 0.0 0.0 n the peak hourly traffic trips Scenario 2: 0.0 0.0 0.0 0.0 11) and assuming the peak hour 0.0 0.0 0.4 0.6 0.98 1.0 0.96 occur any hour in the 24 hour 0.88 Per the Traffic Study, peak 0.85 0.94 0.9 0.67 0.35 0.33 fic counts are expected in the 0.02 0.0 0.02 0.0 0.0 0.0 e range of 8am to 3pm and would There is also an attached be occurring every single hour of table for Scenario 2, in day which the hourly distribution of truck trips is shown assuming a daily maximum of 427 truck trips (according to Appendix B of the Traffic Study). The emission scaling factors, however, are computed based on the maximum hourly truck trips (during hour 10) being equal to 112 trips/hour. The daily (24 hour) totals of the modeled daily emissions scaling factors are **7.082** for Scenario 1 and 8.900 for Scenario 2. This implies that the modeled total daily truck trips for Scenario 2 is 1,073 truck trips (not 427). Other than the hourly emission factors, the model inputs were identical between Scenario 1 and Scenario 2: both had the same source parameters and emission rates for seven (non-zero) open pit sources and four point sources, identical building downwash parameters for the four point sources. identical wind speed emissions scaling for the two PTDR open pit sources (PTDR HMA and PTD_QE), identical monthly emissions scaling (January through March had zero emissions for sources PTOS HMA, BH HMA, and GEN HMA), the same fiveyear meteorological data

(2014-2018), and the same

¹ The maximum hourly emissions rate assumes the highest wind speed category. Emission rates for two of the modeled sources (PTDR_HMA and PTDR_QE) were adjusted downward within AERMOD based on the hourly wind speed. The emissions scaling factors were 0.04 for wind speeds between 0.0 and 1.54 m/s, 0.10 for wind speeds between 1.55 and 3.09 m/s, .019 between 3.10 and 5.14 m/s, 0.35 between 5.15 and 8.23 m/s, 0.50 between 8.24 and 10.80 m/s, and 1.00 for wind speeds above 10.80 m/s.

set of receptor locations. The locations of the 11 modeled sources and 323 modeled receptors are shown in Figure 1, below. The spatial distribution of receptor locations appears to adequately capture peak concentration impacts.

Figure 1. Modeled source locations (red) and receptor locations (blue)

The maximum modeled hourly total PM_{2.5} emissions (for all sources) for both modeled scenarios is 4.19 lb/hour.¹ Considering (1) the hourly wind speeds during the peak modeled day (December 2, 2017) for sources PTDR_HMA and PTDR_QE, and (2) the diurnal scaling factors for sources PTOS_QAV and PTOS_QEV, the modeled average hourly PM_{2.5} emission rate during the peak modeled day was 3.52 lb/hour for Scenario 1, and 3.56 lb/hour for Scenario 2. The modeled maximum 24hour average PM_{2.5} concentration for Scenario 1 (constant hourly morning emissions) was 4.33 µg/m³. The modeled maximum 24hour average PM_{2.5} concentration for Scenario 2 ("actual" emissions across 14 hours each day) was 3.63 µg/m³. Scenario 2 had higher overall daily emissions than Scenario 1, however the modeled

maximum 24-hour average PM_{2.5} concentration for Scenario 1 was 19% higher than for Scenario 2. This is due to the higher emissions for Scenario 1 that occur during the early morning hours when dispersion tends to be lower (causing higher downwind concentrations). The background 24-hour PM_{2.5} concentration used by BCX was 12.04 µg/m³ which brings the total PM_{2.5} concentration to 16.37 µg/m³ for Scenario 1 and 15.67 μ g/m³ for Scenario 2, which are both under the criteria (standard) of 27 µg/m³. I re-ran the AERMOD model

for Scenario 1, with the hour 13 scaling factor adjusted to account for the apparent error, as described above (the hour 13 multiplier was changed from 0.082 to 0.625). As expected, adjusting the minor error barely changed the modeling results, increasing the modeled maximum 24hour average PM_{2.5} concentration from 4.332 µg/m³ to 4.339 µg/m³. The modeled maximum 24hour average PM concentration was 56.5 µg/m³ for Scenario 1 and $45.4 \ \mu g/m^3$ for Scenario 2. When added to the assumed background concentration (48.17), the total PM was 104.7 µg/m³ for Scenario 1 and 93.57 for Scenario 2. Although these modeled total PM concentrations are both under the criteria (standard), the Scenario 1 results are 87% of the standard level, which represents a significant modeled impact