Tree Inventory and Preservation Plan Report Milton Porta Lands Milton, ON

prepared for

Studio TLA
20 Champlain Boulevard
North York, ON M3H $2 Z 1$

prepared by

28 April 2020
Revised: 04 May 2020, 19 June 2020, 05 August 2020,
10 August 2020, 06 April 2021

Introduction

Kuntz Forestry Consulting Inc. was retained by Studio TLA to complete a Tree Inventory and Preservation Plan report in support of a development application for four properties located at 8802 Boston Church Road, 8830 Boston Church Road, 8880 Boston Church Road, and 8350 Esquesing Line. The first three properties are located on the southwest corner of the Boston Church Road and No. 5 Sideroad intersection and the fourth property is located on the northeast corner of the Boston Church Road and James Snow Parkway North intersection in Milton, ON. The properties are located within a residential and agricultural area.

The work plan for the study included the following:

- Prepare inventory of the tree resources over 10 cm on and within six metres of the subject properties (excluding the existing woodlot) and trees of all sizes within the road right-of-way;
- Evaluate potential tree saving opportunities based on proposed development plans; and,
- Document the findings in a Tree Inventory and Preservation Plan Report.

Methodology

The tree inventory was conducted on 21 April 2020, 22 April 2020, 24 April 2020, and 05 August 2020. Trees measuring over 10 cm DBH on and within six metres of the subject properties were identified in the tree inventory. Trees were located using the topographic survey provided, estimations made in the field, and a handheld GPS unit (Trimble GeoExplorer ${ }^{\circledR}$ Series) accurate to ± 1 metre. The dripline distance was used in the preservation planning analysis to determine if tree removal is required. Where development is proposed within a dripline, there is the potential to damage tree roots and tree removal may be required.

Tree resources were assessed utilizing the following parameters:
Tree \# - tree number that corresponds to the inventory and Figures 1 - 9 .
Species - common and botanical names provided in the inventory table.
DBH - diameter (centimetres) at breast height, measured at 1.4 m above the ground.
Condition - condition of tree considering trunk integrity, crown structure, crown vigour, and root zone environment. Condition ratings include poor (P), fair (F) and good (G).
Crown Dieback - Percentage of dead branches within the crown.
Drip Line - Crown radius; and
Comments - Any other relevant tree condition information.

Stand Tally Analysis

Where trees were situated in groups and their individual locations could not be deciphered, they were inventoried in tree polygons. Tree polygons are denoted with a " P " in front of the tree number. Trees within a tree polygon were inventoried using a 100% tally analysis by species, size class, and quality. On private property, trees with a DBH of 10 cm or greater were included in the stand tally analysis. Within the City right-of-way, trees of all sizes were included in the stand tally analysis.

Trees were assessed for condition utilizing the following parameters:
Species: Common and botanical names provided in the inventory table;
Size Class (DBH): less than $10 \mathrm{~cm}, 10-24 \mathrm{~cm}, 26-36 \mathrm{~cm}, 38-48 \mathrm{~cm}, 50 \mathrm{~cm}$ and over;
Quality Class: Acceptable Growing Stock (AGS), Unacceptable Growing Stock (UGS)
Trees classified as AGS are trees with no major defects in the bole and exhibit a relatively good crown structure and vigour. Trees classified as UGS are trees with a major defect in the bole or exhibiting a relatively poor crown structure or vigour. Refer to Table 2 for the inventory of trees situated within polygons.

Trees included in the inventory were identified using the numbers 651 - 697, 1583 1682, 1678, and 1680 - 1702. Polygons (groups of trees) were identified with the prefix "P". Refer to Table 1 and Table 2 for the complete tree inventory. The results of the evaluation are provided below.

Existing Site Conditions

The subject properties are comprised of agricultural lands with residential houses. A CN railway corridor borders the west side of the property at 8880 Boston Church Road in the north to south direction. A Hydro corridor borders 8350 Esquesing Line to the south in the west to east direction. There is an existing woodland that runs along the northern border of the property at 8350 Esquesing Line. Both sites are bordered by No. 5 Sideroad to the north, Esquesing Line to the east, and James Snow Parkway North to the south.

The tree inventory documented a total of 142 trees and 19 tree polygons situated on and within six metres of the development area. Trees included in the inventory were comprised of Apple species (Malus spp.), Black Walnut (Juglans nigra), Sugar Maple (Acer saccharum), Norway Maple (Acer platanoides), White Ash (Fraxinus americana), Bur Oak (Quercus macrocarpa), White Elm (Ulmus americana), Little-leaf Linden (Tilia cordata), Weeping Willow (Salix babylonica), Horsechestnut (Aesculus hippocastanum), Austrian Pine (Pinus nigra), Red Maple (Acer rubrum), Yew species (Taxus spp.), Scots Pine (Pinus Sylvestris), Blue Spruce (Picea pungens), Umbrella Catalpa (Catalpa bugnei 'Nana'), Eastern White Cedar (Thuja occidentalis), White Spruce (Picea glauca), Silver Maple (Acer saccharinum), White Birch (Betula papyrifera), Trembling Aspen (Populus tremuloides), Tamarack (Larix laricina), White Pine (Pinus strobus), Norway Spruce (Picea abies), Green Ash (Fraxinus pennsylvanica), Black Locust (Robinia pseudoacacia), Manitoba Maple (Acer negundo), Shagbark Hickory (Carya ovata), Cherry species (Prunus spp.), Black Cherry (Prunus serotina), Poplar species (Populus spp.), Pear species (Pyrus spp.), Willow species (Salix spp.), Basswood (Tilia americana), and Honey Locust cultivar (Gleditsia triacanthos 'inermis'). Tree polygons inventoried on the subject property do not constitute as woodlands per the Halton Tree Bylaw 121-05. Refer to Table 1 and Table 2 for the complete inventory and Figures 1 9 for tree locations.

Proposed Development

The proposed development includes the construction of a business park with multiple buildings, two storm water management ponds, roads, parking lots, and new water channels. The development will also include the widening of Boston Church Road.

There are two holdout properties (8820 Boston Church Road and 8480 Esquesing Line) located in the middle of the development. The existing house at 8350 Esquesing Line is proposed to be moved southeast of the storm water management pond on James Snow Parkway, as this is a designated Heritage Home. The development is part of a larger project that is proposed for this area in Milton.

Discussion

The following sections provide a discussion and analysis of development impacts, tree removal requirements, and tree preservation relative to the proposed development and existing conditions.

Development Impacts / Tree Removal

The removal of 123 trees and 16 tree polygons will be required to accommodate the proposed development. Trees P1584, 1619-1623, and 1687-1690 have trunks that conflict directly with the proposed buildings. Trees P1585, 1634, and 1665-1672 have trunks that conflict directly with the proposed trailer locations. Trees P1614, P1615 and P1624 - 1629 conflict with the proposed Storm Water Management Pond. Trees 662 664, P1616 - 1618, 1630, 1632, P1662, 1678, 1680, 1681, 1685, 1686, 1691, 1692, and 1695 have trunks that conflict directly with the proposed roads and parking lots on site. Trees P661, 1683, 1684, 1693, and 1694 are located close to the proposed parking lots such that their roots and / or crowns would be impacted by construction. Trees 651 653, P666-670, 674, 676-679, 696, P1638-1661, and 1696-1702 have trunks that conflict with the proposed road widening along Boston Church Road. Tree 671 is located close to the proposed road widening along Boston Church Road such that its roots and / or crown would be impacted by construction. Trees 672, 673, and 686-692 are located close to the existing houses such that their roots and / or crowns would be impacted by demolition. Tree 697 is located close to the existing driveway such that its roots and / or crown would be impacted by driveway demolition. Trees 1663 and 1664 conflict with the proposed channel construction. P1631 and 1633 conflict with both the proposed buildings and parking lots. Trees 654-660, 681, 683 - 685, 693, 694, 1568 1588, and the eastern portion of P1605 conflict with the proposed site clearing. The western portion of P1605 conflicts with the proposed channel construction.

Trees 665, 667 - 670, 675, 680, 682, 689, 695, 1583, 1597, 1599, 1611, 1621 - 1623, 1630, 1637, 1639, 1643, 1649, 1654, 1660, 1661, 1667, 1670, 1672, 1682, 1690, 1695 1697, and 1699-1702 are in poor or hazardous condition and their removal is advised regardless of the site plan. Tree 675 is located on the property boundary and written permission from its shared owner will be required prior to its removal.

Tree Preservation

The preservation of the remaining 19 trees, three tree polygons and the existing woodlot will be possible with the use of appropriate tree protection measures as indicated on Figure 1. Tree protection measures must be implemented prior to the proposed work to ensure tree resources designated for retention are not impacted by the proposed development. Tree preservation fencing for the existing woodlot should be placed at a distance of three metres north of the proposed development in order to provide space for grading and construction. Tree preservation fencing must be placed at minimally outside the dripline of all trees within the existing woodlot. Trees prescribed for retention within
the City right-of-way are subject to future road widening plans, future regrading plans, and future site plans, which may impact their retention suitability. Refer to Figures 1 - 9 for the location of required tree preservation fencing and general Tree Protection Plan Notes. Refer to Appendix A for tree preservation fencing details.

Summary and Recommendations

Kuntz Forestry Consulting Inc. was retained by Studio TLA to complete a Tree Inventory and Preservation Plan in support of a development application for the Milton Porta Lands in Milton, Ontario. A tree inventory was conducted and reviewed in the context of the proposed site plan.

The findings of the study indicate a total of 142 trees and 19 polygon features on and within six metres of the proposed development area and within the City right-of-way. The removal of 123 trees and 16 polygon features is required to accommodate the proposed development. The remaining trees can be saved provided proper tree protection is installed as per Figures 1-9.

The following recommendations are suggested to minimize impacts to trees identified for preservation. Refer to Figures $1-9$ for tree protection fencing locations and general Tree Protection Plan Notes.

- Tree protection barriers and fencing should be erected at locations as prescribed on Figures 1-9. All tree protection measures should follow the guidelines as set out in the tree preservation plan notes and the tree preservation fencing detail.
- No construction activity including surface treatments, excavations of any kind, storage of materials or vehicles, unless specifically outlined above, is permitted within the area identified on Figures $1-9$ as a tree protection zone (TPZ) at any time during or after construction.
- Branches and roots that extend beyond prescribed tree protection zones that require pruning must be pruned by a qualified Arborist or other tree professional. All pruning of tree roots and branches must be in accordance with Good Arboricultural Standards.
- Site visits, pre, during and post construction is recommended by either a certified consulting arborist (I.S.A.) or registered professional forester (R.P.F.) to ensure proper utilization of tree protection barriers. Trees should also be inspected for damage incurred during construction to ensure appropriate pruning or other measures are implemented.

Respectfully Submitted,

Kuntz Forestry Consulting Inc.

Kimberly Dowell
Kimberly Dowell, Urban Forestry Specialist
Master of Forest Conservation, ISA Certified Arborist \#PN-8858A
Email: kim.dowell@kuntzforestry.ca

Limitations of Assessment

Only the tree(s) identified in this report were included in the inventory. The assessment of the trees presented in this report has been made using accepted arboricultural techniques. These may include a visual examination taken from the ground of all the above-ground parts of the tree for structural defects, scars, external indications of decay such as fungal fruiting bodies, evidence of attack by insects, discoloured foliage, the condition of any visible root structures, the degree of lean (if any), the general condition of the trees and the identification of potentially hazardous trees or recommendations for removal (if applicable). Where trees could not be directly accessed (ie. due to obstructions, and/or on neighbouring properties), trees were assessed as accurately as possible from nearby vantage points.

Locations of trees provided in the report are determined as accurately as possible based on the best information available. If official survey information is not provided, tree location in the report may not be exact. In this case, if trees occur on or near property boundaries, an official site survey may be required to determine ownership utilizing specialized survey protocol to gain precise location.

Furthermore, recommendations made in this report are based on the site plans that have been provided at the time of reporting. These recommendations may no longer be applicable should changes be made to the site plan and/or grading, servicing, or landscaping plans following report submission.

Notwithstanding the recommendations and conclusions made in this report, it must be recognized that trees are living organisms, and their health and vigor constantly change over time. They are not immune to changes in site conditions or seasonal variations in the weather conditions. Any tree will fail if the forces applied to the tree exceed the strength of the tree or its parts.

Although every effort has been made to ensure that this assessment is reasonably accurate, the trees should be re-assessed periodically. The assessment presented in this report is valid at the time of inspection.

Appendix A. Tree Protection Fencing Guidelines

Table 1. Tree Inventory

Location: Milton Porta Lands, Milton
Date: 21 April 2020, 22 April 2020, 24 April 2020, 05 August 2020
Surveyors: KD

Tree\#	Common Name	Scientific Name	DBH	TI	CS	CV	CDB	DL	Comments	Action
651	Cherry species	Prunus spp.	7, 5, 5, 5	F	F	F-G		1.5	Co-dominant stems at base, stem wound (M)	Remove
P652	Eastern White Cedar	Thuja occidentalis	5-15	F-G	F	F-G		2	Asymmetrical crown (H), multi-stem at base, one stem dead, epicormic branching (H)	Remove
653	Apple species	Malus spp.	35, 30, 30	F	P-F	P-F		5	8 trees, some multi-stem at base, asymmetrical crown (M)	Remove
654	Honey Locust (cultivar)	Gleditsia triacanthos 'inermis' cv.	39, 24, 16	F-G	F	F	10	4	Pruning wounds (M), multi-stem a1 1 metre, deadwood (L), epicormic branching (M)	Remove
655	Silver Maple	Acer saccharinum	51	F-G	F	P-F		6	Co-dominant stems at 1.5 metres, epicormic branching (H), deadwood (L)	Remove
656	Silver Maple	Acer saccharinum	90	F-G	F	F-G		8	Multi-stem at 1.5 metres, epicormic branching (M)	Remove
657	Basswood	Tilia americana	27	F	P-F	P-F		4	Asymmetrical crown (H), lost leader, bow (H) from lost leader, coppice growth (M), epicormic branching (M) pruning wounds (M)	Remove
658	Poplar species	Populus spp.	11	G	G	F-G		1		Remove
659	Poplar species	Populus spp.	12, 10	G	F	F-G	5	1	Co-dominant stems at base, epicormic branching (M)	Remove
660	Poplar species	Populus spp.	14, 12	G	F	F		1.5	Co-dominant stems at base, epicormic branching (H)	Remove
P661	Eastern White Cedar	Thuja occidentalis	5-25	F-G	F-G	F-G		2	10 trees, many with sweep (M), some multi-stem	Remove
662	Scots Pine	Pinus sylvestris	31	F-G	F-G	F-G		2	Sweep (L), crooks (L), asymmetrical crown (L)	Remove
663	Scots Pine	Pinus sylvestris	32	F-G	F-G	G		3	Pruning wounds (L), sweep (L)	Remove
664	Scots Pine	Pinus sylvestris	31, 22	F-G	F	G		3	Co-dominant stems at base, crook (H), sweep (L)	Remove
665	Eastern White Cedar	Thuja occidentalis	33	P	P-F	G		1.5	Crack (H) at union, co-dominant stems at 2 metres, pruning wounds (M), lean (L)	Remove (Condition)
P666	Eastern White Cedar	Thuja occidentalis	10-30	F	F	F		2.5	16 trees, some with lean (M), many multi-stem, some with stem wounds (M), some are declining	Remove
667	Green Ash	Fraxinus pennsylvanica	-	-	-	-	-	-	Dead	Remove (Condition)
668	Green Ash	Fraxinus pennsylvanica	5-15	P	P	P	25	2	EAB present, bark peeling, epicormic branching (H), top-down dieback	Remove (Condition)
669	White Ash	Fraxinus americana	5-20	P	P	P	50	2	Bark peeling, EAB present, epicormic branching (H)	Remove (Condition)
670	Green Ash	Fraxinus pennsylvanica	10, 5, 3	P	P	P-F		1	Co-dominant stems at base, epicormic branching (M), EAB present	Remove (Condition)
671	White Birch	Betula papyrifera	17, 17, 17	F-G	F	F-G		3	Multi-stem at base, stem wound (H) on one stem, pruning wounds (L), dw (L)	Remove
672	Honey Locust (cultivar)	Gleditsia triacanthos 'inermis' cv.	46, 40	F-G	F	F		7	Co-dominant stems at 1 metre, pruning wounds (M), deadwood (L), epicormic branching (L), broken branches (L)	Remove
673	Eastern White Cedar	Thuja occidentalis	30, 24	F-G	F	G		1.5	Co-dominant stems at 1 metre, pruning wounds (M)	Remove
674	Trembling Aspen	Populus tremuloides	1-5	G	F	G		1	Multi-stem at base	Remove
675	Manitoba Maple	Acer negundo	50	P	P-F	P-F		5	Stem wounds (H), epicormic branching (H), co-dominant stems at 1 metre deadwood (M), broken branches (M)	Remove (Condition)
676	White Spruce	Picea glauca	23	G	G	G		2	Epicormic branching (L), pruning wounds (M)	Remove
677	White Pine	Pinus strobus	28	G	F-G	G		3	Crook (M) in crown, pruning wounds (L)	Remove

678	White Birch	Betula papyrifera	22	G	F-G	F-G		5	Sweep (L), deadwood (L), asymmetrical crown (L)	Remove
679	Silver Maple	Acer saccharinum	71	F	F	P	20	7	Co-dominant stems at 1.5 metres, epicormic branching (H), deadwood (M), top-down dieback	Remove
680	Tamarack	Larix laricina	14	F	P	P	15	2.5	Asymmetrical crown (H), epicormic branching (M), top-down dieback	Remove (Condition)
681	White Pine	Pinus strobus	35	G	F-G	G		7	Asymmetrical crown (M), pruning wounds (L)	Remove
682	Silver Maple	Acer saccharinum	75	F-G	F-G	P-F	20	6	Top-down dieback, multi-stem at 2 metres, deadwood (H), epicormic branching (H)	Remove (Condition)
683	Norway Spruce	Picea abies	24	G	F-G	G		3	Asymmetrical crown (M)	Remove
684	Norway Maple	Acer platanoides	27	G	F-G	G		4		Remove
685	White Pine	Pinus strobus	35	G	F-G	G		6	Asymmetrical crown (M)	Remove
686	Blue Spruce	Picea pungens	46	G	F-G	G		4	Asymmetrical crown (M)	Remove
687	White Spruce	Picea glauca	42	G	G	G		3		Remove
688	Tamarack	Larix laricina	24	G	G	G		3	Asymmetrical crown (L)	Remove
689	Green Ash	Fraxinus pennsylvanica	-	-	-	-	-	-	Dead	Remove (Condition)
	Green Ash	Fraxinus pennsy/vanica	10	P	F	P	-	1.5	1 tree	
P690	Eastern White Cedar	Thuja occidentalis	5-20	F	F	F	-	1.5	12 trees, some multi-stem, some with sweep (M), some with lean (L)	Remove
691	White Pine	Pinus strobus	39	G	F-G	G		7	Sweep (M)	Remove
692	White Pine	Pinus strobus	41	G	F-G	G		7	Asymmetrical crown (M), pruning wounds (L)	Remove
693	Willow species	Salix spp.	5-10	F	F	F-G		3	Multi-stem at base, deadwood (L)	Remove
694	Willow species	Salix spp.	5-15	F-G	F	F-G		3	Multi-stem at base, deadwood (L), pruning wounds (L), lean (L), asymmetrical crown (M)	Remove
695	Cherry species	Prunus spp.	5-15	P	P-F	F	5	4	Trunk decay (M), multi-stem at 1.25 metres, deadwood (L), epicormic branching (L)	Remove (Condition)
696	White Pine	Pinus strobus	49	F	F	G		7	Lean (M)	Remove
697	White Pine	Pinus strobus	34	G	G	F-G	10	4	Asymmetrical crown (L)	Remove
1583	Green Ash	Fraxinus americana	30	P	P	P		3.5	One stem previously pruned at 1 metre, EAB present, bark peeling	Remove (Condition)
P1584	Refer to Table 2									Remove
P1585	Refer to Table 2									Remove
1586	Black Walnut	Juglans nigra	18, 15	F	F	P-F		2.5	Co-dominant stems at 0.5 metres, broken branches (L), stem wound (M) from 0.75 to 1.5 metres	Remove
1587	Sugar Maple	Acer saccharum	14	G	G	G		1.5		Remove
1588	Sugar Maple	Acer saccharum	13	G	G	F-G		1.5		Remove
1589	Sugar Maple	Acer saccharum	$\sim 10, \sim 9, \sim 8$	G	F	G		1.5	Multi-stem at base	Retain
1590	Sugar Maple	Acer saccharum	$\sim 45, \sim 40$	P-F	F	F-G		4	Co-dominant stems at base, one stem pruned at 3 metres, broken branches (M), cavities (M)	Retain
1591	Norway Maple	Acer platanoides	~ 15	G	G	G		2		Retain
1592	Norway Maple	Acer platanoides	~ 40	F-G	F-G	G		4.5		Retain
1593	Sugar Maple	Acer saccharum	~ 20	G	G	G		3		Retain
1594	Norway Maple	Acer platanoides	~ 45	P	P-F	F		3.5	Multiple cavities (H), lost leader, epicormic branching (M)	Retain
1595	Norway Maple	Acer platanoides	~ 18	G	G	G		3	Lean (L)	Retain

1596	Sugar Maple	Acer saccharum	~ 60	P-F	P-F	P-F		6	Asymmetrical crown (H), co-dominant stems at 2 metres, one stem pruned at 4 metres, epicormic branching (H), cavities (M)	Retain
1597	Sugar Maple	Acer saccharum	~ 55	P	P	P-F		5.5	Cavities (H), stems split at union, multi-stem at 2 metres, broken branches (H), epicormic branching (H)	Remove (Condition)
1598	Sugar Maple	Acer saccharum	~ 60	F-G	F-G	F		6	Epicormic branching (M), co-dominant stems at 4 metres	Retain
1599	White Ash	Fraxinus americana	~35	P-F	P-F	P	50	5	Top-down dieback	Remove (Condition)
1600	White Ash	Fraxinus americana	~13	F-G	F-G	F-G		3		Retain
P1601	Green Ash	Fraxinus pennsylvanica	~15	F	F	F		1	2 trees	Retain
P1601	Bur Oak	Quercus macrocarpa	~ 10	G	G	G		1	1 tree	
1602	White Elm	Ulmus americana	~ 75	F-G	F	F-G		7	Multi-stem at 2.5 metres, broken branches (L), epicormic branching (M)	Retain
1603	Sugar Maple	Acer saccharum	~ 65	G	F-G	G		7		Retain
1604	Norway Maple	Acer platanoides	16	G	G	G		2		Retain
P1605	Refer to Table 2									Remove
P1606	Refer to Table 2									Retain
P1607	Refer to Table 2									Retain
1608	White Elm	Ulmus americana	11	F-G	F	F	2		Epicormic branching (M)	Retain
1609	Black Walnut	Juglans nigra	14, 12	F-G	F	G	2.5		Co-dominant stems at 0.75 metres, included bark (L)	Retain
1610	Black Walnut	Juglans nigra	14, 8, 8	F-G	F-G	G	2.5		Co-dominant stems at 0.5 metres, broken branches (L)	Retain
1611	Black Walnut	Juglans nigra	29	P	F	P-F	3		Stem wound (H) from base to 1 metre, bark peeling, broken branches (M)	Remove (Condition)
1612	Black Walnut	Juglans nigra	30	G	G	G	3.5		Broken branches (L)	Retain
1613	Black Walnut	Juglans nigra	31	F-G	G	G	3.5		Broken branches (L)	Retain
P1614	Refer to Table 2									Remove
P1615	Refer to Table 2									Remove
P1616	Refer to Table 2									Remove
1617	White Oak	Quercus alba	35	F-G	G	G	4			Remove
1618	Little-leaf Linden	Tilia cordata	18	G	G	G	2.5		Included bark (L)	Remove
1619	Little-leaf Linden	Tilia cordata	19	G	F-G	G	3			Remove
1620	Little-leaf Linden	Tilia cordata	15	G	G	G	2.5		Included bark (L)	Remove
1621	Weeping Willow	Salix babylonica	~ 50	P	F	P-F	6		Lean (L), stem wound (H) at base, vine competition (H), deadwood (M), epicormic branching (H), broken branches (M)	Remove (Condition)
1622	Weeping Willow	Salix babylonica	20	P	F	P-F	5		Epicormic branching (H), stem wound (H) at base, cavity (H) at base	Remove (Condition)
1623	Weeping Willow	Salix babylonica	$\sim 40, \sim 35, \sim 25$	P-F	P-F	P-F	6		Broken branches (H), epicormic branching (H), multi-stem at base	Remove (Condition)
P1624	Refer to Table 2									Remove
1625	Willow species	Salix spp.	98	F	F	P-F	8		Epicormic branching (H), coppice growth (M), broken branches (L), multi-stem at 1.5 metres	Remove
1626	Willow species	Salix spp.	59	F	F	F	7		Epicormic branching (H), coppice growth (M), broken branches (L), codominant stems at 2 metres	Remove
1627	Bur Oak	Quercus macrocarpa	71	G	F-G	F	7		Epicormic branching (M)	Remove
1628	Bur Oak	Quercus macrocarpa	~ 53	F	G	F	7		Included fence, epicormic branching (H)	Remove

1629	Bur Oak	Quercus macrocarpa	~75	F	F	F	9		Included fence, pruning wounds (M), asymmetrical crown (M), epicormic branching (H)	Remove
1630	Bur Oak	Quercus macrocarpa	~90	P	P-F	P	10	40	Stem wound (H) from base to 4 metres, cavity (H) at base, epicormic branching (H), deadwood (H)	Remove (Condition)
P1631	Refer to Table 2									Remove
1632	White Ash	Fraxinus americana	14, 6, 5, 5	F	F	F		2	EAB present, epicormic branching (M), vine competition (H)	Remove
P1633	Refer to Table 2									Remove
1634	Bur Oak	Quercus macrocarpa	82	G	F-G	F		8	Epicormic branching (M)	Remove
P1635	Refer to Table 2									Remove
1636	Bur Oak	Quercus macrocarpa	21	G	G	F-G		3	Epicormic branching (M)	Retain
1637	Horsechestnut	Aesculus hippocastanum	72, 22	P	P	P-F	60	6	Broken branches (H), cavity (H) at 2 metres, epicormic branching (H), deadwood (M), pruning wounds (M)	Remove (Condition)
P1638	Refer to Table 2									Remove
1639	White Ash	Fraxinus americana	90	P	P	P			Dead	Remove (Condition)
1640	Sugar Maple	Acer saccharum	50	P-F	G	F		6	Cavities (M), included fence, epicormic branching (M)	Remove
1641	Basswood	Tilia americana	23	G	F-G	G		3.5	One stem previously pruned at base	Remove
1642	Basswood	Tilia americana	24, 15	F-G	F	G		3.5	One stem previously pruned at base, co-dominant stems at base	Remove
1643	Dead	-	-	-	-	-		-	-	Remove (Condition)
1644	Basswood	Tilia americana	18	G	G	F-G		3		Remove
1645	Basswood	Tilia americana	21, 13	F-G	F	F-G		3	Co-dominant stems at base	Remove
1646	Basswood	Tilia americana	14	G	G	F-G		1.5		Remove
1647	Basswood	Tilia americana	13	G	G	G		1.5		Remove
1648	Basswood	Tilia americana	23	G	F-G	G		4		Remove
1649	Basswood	Tilia americana	$\begin{gathered} 10-40 \\ \text { (Average: 25) } \end{gathered}$	P	P	P-F		5	Multi-stem at base, multiple previous stem failures, cavities (H), decay, deadwood (M)	Remove (Condition)
1650	Basswood	Tilia americana	12	G	G	G		1		Remove
1651	Basswood	Tilia americana	13	G	G	G		1.5		Remove
1652	Basswood	Tilia americana	11	G	G	G		1.5		Remove
1653	Basswood	Tilia americana	17	G	F	F-G		2	Suppressed	Remove
1654	White Ash	Fraxinus americana	~ 100	P-F	F	P		9	Epicormic branching (H), EAB present	Remove (Condition)
1655	Basswood	Tilia americana	15	F	G	F		1.5		Remove
1656	Basswood	Tilia americana	18, 21	F-G	F	G		3.5	Bow (L)	Remove
1657	Basswood	Tilia americana	19	F-G	F-G	F-G		3	Lean (L), suppressed	Remove
1658	White Ash	Fraxinus americana	15,9	F	F	F		2	Co-dominant stems at base	Remove
1659	Sugar Maple	Acer saccharum	54	F-G	G	F-G		7	Deadwood (M), broken branches (L), epicormic branching (M), included fence included fence	Remove
1660	White Ash	Fraxinus americana	~ 80					0	Dead	Remove (Condition)
1661	Sugar Maple	Acer saccharum	~ 50	P	P	F		6	Included fence, cavity (H) from base to 3 metres, hazard	Remove (Condition)
P1662	White Elm	Ulmus americana	3-12	G	G	G	1.5		4 trees, 3 trees under 10 cm DBH, 1 tree 12 cm DBH	Remove
1663	Green Ash	Fraxinus pennsy/vanica	11	F	G	F		1.5		Remove

1664	Apple species	Malus spp.	30	F	FP	F		3.5	Deadwood (M), included bark (H)	Remove
1665	Apple species	Malus spp.	$1-15$ (Average: 9)	P-F	P-F	P-F		3	Multi-stem at base, deadwood (M), included bark	Remove
1666	Apple species	Malus spp.	$10-25$ (Average: 15)	F	F	F		3	Multi-stem at base, epicormic branching (M)	Remove
1667	Pear species	Pyrus spp.	$10-20$ (Average: 12)	P-F	P-F	P		3.5	deadwood (H), multi-stem at base, epicormic branching (H)	Remove (Condition)
1668	Apple species	Malus spp.	$\begin{gathered} 10-20 \\ \text { (Average: } 18 \text {) } \end{gathered}$	P-F	P-F	P-F		3	Epicormic branching (H), multi-stem at base, deadwood (M)	Remove
1669	Apple species	Malus spp.	17	F-G	F-G	F		3	Epicormic branching (M), lean (L)	Remove
1670	Green Ash	Fraxinus pennsylvanica	11, 10, 8, 6	P	P	P-F		2	Bark peeling, vine competition (H), multi-stem at base, EAB present	Remove (Condition)
1671	Apple species	Malus spp.	$15-40$ (Average: 30)	P-F	P-F	P-F		4.5	Included bark (H), multi-stem at base, epicormic branching (H), deadwood (M)	Remove
1672	White Ash	Fraxinus americana	24	P	P	P			Dead	Remove (Condition)
1678	Silver Maple	Acer saccharinum	39	F-G	F	G	4.5		Included bark (H), co-dominant stems at 0.25 metres	Remove
1680	Red Maple	Acer rubrum	17	F-G	G	G	2			Remove
1681	Silver Maple	Acer saccharinum	$\begin{gathered} 5-15 \\ \text { (Average: 11) } \end{gathered}$	G	F	G	2.5			Remove
1682	Poplar species	Populus spp.	$\begin{gathered} 15-40 \\ \text { (Average: } 30 \text {) } \end{gathered}$	P	P	P	5	80	Deadwood (H), multi-stem at base	Remove (Condition)
1683	White Elm	Ulmus americana	$\sim 25, \sim 9, \sim 7$	F	F-G	F	3		Timber debris in root zone, co-dominant stems at 0.5 metres	Remove
1684	Austrian Pine	Pinus nigra	22	F-G	G	G	2.5		Pruning wounds (M)	Remove
1685	Honey Locust (cultivar)	Gleditsia triacanthos 'inermis' cv.	26, 13	F-G	F-G	F-G	3.5		Broken branches (L)	Remove
1686	Yew species	Taxus spp.	1-10	F-G	F	G	1.5			Remove
1687	Apple species	Malus spp.	~ 40	F-G	F-G	F	2.5		Sweep (L), pruning wounds (M), epicormic branching (M)	Remove
1688	Willow species	Salix spp.	$1-15$ (Average: 12)	P-F	P-F	P-F		2	Multi-stem at base, deadwood (M), included bark	Remove
1689	Silver Maple	Acer saccharinum	$\begin{gathered} 8-35 \\ \text { (Average: 17) } \\ \hline \end{gathered}$	F-G	F	F-G		5	Multi-stem at base, included bark (M), epicormic branching (L)	Remove
1690	White Ash	Fraxinus americana	20	P	G	P	2.5		EAB present, declining	Remove (Condition)
1691	Austrian Pine	Pinus nigra	31	G	F-G	G	3		Pruning wounds (M), sweep (L)	Remove
1692	Blue Spruce	Picea pungens	36	F-G	F	F-G		4	Epicormic branching (L), crook (H) from topping at 5 metres, pruning wounds (M)	Remove
1693	Silver Maple	Acer saccharinum	52	F-G	F	F-G	6		Multi-stem at 2 metres, broken branches (L), epicormic branching (M)	Remove
1694	Umbrella Catalpa	Catalpa bugnei 'Nana'	15	P	F	P		1.5	Cavity (H) at 1 metre, epicormic branching (H), pruning wounds (M), stem wound (H) at 1 metre	Remove
1695	Basswood	Tilia americana	$5-12$ (Average: 11)	P	P	P		2	Multi-stem at base, deadwood (H), declining	Remove (Condition)
1696	Green Ash	Fraxinus pennsylvanica	21, 14	P	F	P-F		3	Bark peeling, EAB present	Remove (Condition)
1697	Green Ash	Fraxinus pennsylvanica	17, 12	P	F	P-F		2	Bark peeling, EAB present	Remove (Condition)
1698	Sugar Maple	Acer saccharum	~ 50	F	G	F		8	Included fence, broken branches (L), epicormic branching (H)	Remove

Tree Inventory and Preservation Plan
Milton Porta Lands, Milton, ON

1697	Green Ash	Fraxinus pennsy/vanica	17,12	P	F	P-F		2	Bark peeling, EAB present	Remove (Condition)
1698	Sugar Maple	Acer saccharum	~ 50	F	G	F		8	Included fence, broken branches (L), epicormic branching (H)	Remove
1699	White Ash	Fraxinus americana	~ 100	F	F	P-F		8	EAB present	Remove (Condition)
1700	Green Ash	Fraxinus pennsy/vanica	~ 100	P	F	P		8	EAB present, bark peeling, epicormic branching (H), deadwood (M)	Remove (Condition)
1701	White Ash	Fraxinus americana	21	P	G	P		2.5	Bark peeling, EAB present	Remove (Condition)
1702	White Ash	Fraxinus americana	~ 90	P	F	P		7	EAB present, bark peeling, broken branches (H), deadwood (H)	Remove (Condition)

Codes		
DBH	Diameter at Breast Height	(cm)
TI	Trunk Integrity	(G, F, P)
CS	Crown Structure	(G, F, P)
CV	Crown Vigor	(G, F, P)
CDB	Crown Dieback	\%
DL	Dripline	(m)
P = poor, $\mathrm{F}=$ fair, $\mathrm{G}=$ good, \sim = estimate, $(\mathrm{VL})=$ very light, $(\mathrm{L})=$ light, $(\mathrm{M})=$ moderate, $(\mathrm{H})=$ heavy		

Table 2. Stand Tally Analysis

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
White Elm (Ulmus americana)	1	0	0	0	0	0	0	0	1	0
Bur Oak (Quercus macrocarpa)	98	21	34	2	15	1	8	1	155	25
White Ash (Fraxinus americana)	0	0	0	0	0	0	0	1	0	1
Green Ash (Fraxinus pennsylvanica)	1	13	0	1	0	0	0	0	1	14
Apple species (Malus spp.)	4	2	0	0	0	0	0	0	4	2
Poplar species (Populus spp.)	1	0	1	0	0	0	0	0	2	0
Basswood (Tilia americana)	3	0	0	0	0	0	0	0	3	0
Total Number of Trees	108	36	35	3	15	1	8	2	166	42

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
Willow species (Salix spp.)	1	0	0	0	0	0	0	0	1	0
Bur Oak (Quercus macrocarpa)	20	2	10	1	0	0	1	0	31	3
White Pine (Pinus strobus)	0	0	1	0	0	0	0	0	1	0
Apple species (Malus spp.)	0	1	0	1	0	0	0	0	0	2
Total Number of Trees	21	3	11	2	0	0	1	0	33	5
P1605										
Tree Size Class >	Polewood	cm DB	Small (m DBH)	Mediu	$8 \mathrm{~cm})$	Lar	+)		
Species	AGS	UGS								
Bur Oak (Quercus macrocarpa)	2	0	1	0	0	0	0	0	3	0
White Ash (Fraxinus americana)	2	6	0	0	0	0	0	0	2	6
Apple species (Malus spp.)	2	0	1	2	0	0	0	0	3	2
Green Ash (Fraxinus pennsy/vanica)	0	16	0	3	0	0	0	0	0	19
Black Walnut (Juglans nigra)	1	0	0	0	0	0	0	0	1	0
Total Number of Trees	7	22	2	5	0	0	0	0	9	27

Tree Size Class >	Regeneration (<10 cm)		Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS										
White Elm (Ulmus americana)	2	1	0	0	0	0	0	0	0	0	2	1
Green Ash (Fraxinus pennsy/vanica)	1	5	0	0	0	0	0	0	0	0	1	0
White Ash (Fraxinus americana)	2	0	0	0	0	0	0	0	0	0	2	0
Total Number of Trees	5	6	0	0	0	0	0	0	0	0	5	1

P1607

Tree Size Class >	Regeneration ($<10 \mathrm{~cm}$)		Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS										
Green Ash (Fraxinus pennsy/vanica)	1	3	0	0	0	0	0	0	0	0	1	3
Total Number of Trees	1	3	0	0	0	0	0	0	0	0	1	3

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
Silver Maple (Acer saccharinum)	0	0	1	5	4	1	5	0	10	6
Norway Spruce (Picea abies)	2	4	6	0	0	0	0	0	8	4
Eastern White Cedar (Thuja occidentalis)	2	0	0	0	0	0	0	0	2	0
Total Number of Trees	4	4	7	5	4	1	5	0	20	10

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm} \mathrm{+} \mathrm{)}$		Total All Sizes	
Species	AGS	UGS								
Bur Oak (Quercus macrocarpa)	8	1	2	0	0	0	1	1	11	2
Silver Maple (Acer saccharinum)	0	0	1	0	0	0	1	0	2	0
Black Walnut (Juglans nigra)	20	0	1	0	1	0	1	0	23	0
White Elm (Ulmus americana)	1	0	0	0	0	0	0	0	1	0
Green Ash (Fraxinus pennsylvanica)	0	1	0	0	0	0	0	0	0	1
White Spruce (Picea glauca)	0	1	0	0	0	0	0	0	0	1
Willow species (Salix spp.)	0	0	0	0	0	0	0	1	0	1
Horsechestnut (Aesculus hippocastanum)	0	1	0	0	0	0	0	1	0	2
Total Number of Trees	29	4	4	0	1	0	3	3	37	7

P1616

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
Black Locust (Robinia pseudoacacia)	1	0	1	0	1	0	0	0	3	0
Bur Oak (Quercus macrocarpa)	2	0	0	0	1	0	0	0	3	0
Silver Maple (Acer saccharinum)	0	0	0	0	0	1	0	0	0	1
Total Number of Trees	3	0	1	0	2	1	0	0	6	1

P1624

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm} \mathrm{+} \mathrm{)}$		Total All Sizes	
Species	AGS	UGS								
Black Locust (Robinia pseudoacacia)	1	0	1	0	1	0	0	0	3	0
Silver Maple (Acer saccharinum)	0	0	0	1	0	0	0	1	0	2
Black Walnut (Juglans nigra)	1	0	1	0	1	1	1	1	4	2
Willow species (Salix spp.)	0	0	0	0	0	0	6	2	6	2
Total Number of Trees	2	0	2	1	2	1	7	4	13	6

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
Basswood (Tilia americana)	1	0	0	0	0	0	0	0	1	0
Green Ash (Fraxinus pennsylvanica)	1	14	0	4	0	1	0	0	1	19
White Ash (Fraxinus americana)	1	5	1	2	0	0	0	0	2	7
Apple species (Malus spp.)	0	0	0	0	1	0	0	0	1	0
Bur Oak (Quercus macrocarpa)	14	0	3	0	1	0	0	0	18	0
White Elm (Ulmus americana)	1	1	0	0	0	0	0	0	1	1
Manitoba Maple (Acer negundo)	1	0	0	0	0	0	0	0	1	0
Black Walnut (Juglans nigra)	1	0	0	0	0	0	0	0	1	0
Total Number of Trees	20	20	4	6	2	1	0	0	26	27

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
Bur Oak (Quercus macrocarpa)	40	5	20	6	8	0	7	2	75	13
White Elm (Ulmus americana)	3	1	0	1	0	0	0	0	3	2
Manitoba Maple (Acer negundo)	2	0	0	0	0	0	0	0	2	0
Shagbark Hickory (Carya ovata)	0	1	0	0	0	0	0	0	0	1
Black Walnut (Juglans nigra)	1	0	0	0	0	0	0	0	1	0
Apple species (Malus spp.)	1	1	2	0	0	0	0	0	3	1
Norway Maple (Acer platanoides)	1	0	0	0	0	0	0	0	1	0
Green Ash (Fraxinus pennsylvanica)	0	2	0	0	0	0	0	0	0	2
Silver Maple (Acer saccharinum)	0	0	0	0	0	0	0	1	0	1
Total Number of Trees	48	10	22	7	8	0	7	3	85	20

Tree Size Class >	Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS								
Bur Oak (Quercus macrocarpa)	81	11	27	3	8	0	14	5	130	19
Apple species (Malus spp.)	7	5	0	2	2	0	0	0	9	7
Poplar species (Populus spp.)	3	1	0	0	0	0	0	0	3	1
Black Cherry (Prunus serotina)	1	0	0	0	0	0	0	0	1	0
Basswood (Tilia americana)	29	4	3	1	0	1	0	0	32	6
Silver Maple (Acer saccharinum)	10	1	2	0	0	1	2	0	14	2
Green Ash (Fraxinus pennsylvanica)	0	23	0	1	0	0	0	0	0	24
White Elm (Ulmus americana)	1	0	0	0	0	0	0	0	1	0
Shagbark Hickory (Carya ovata)	2	0	1	0	1	0	0	0	4	0
Pear species (Pyrus spp.)	0	0	1	0	0	0	0	0	1	0
Total Number of Trees	134	45	34	7	11	2	16	5	195	59

Tree Size Class >	Regeneration (<10 cm)		Polewood (10-24 cm DBH)		Small (26-36 cm DBH)		Medium (38-48 cm)		Large ($50 \mathrm{~cm}+$)		Total All Sizes	
Species	AGS	UGS										
Apple species (Malus spp.)	2	0	0	0	0	0	0	0	0	0	2	0
Basswood (Tilia americana)	29	5	0	0	0	0	0	0	0	0	29	0
Sugar Maple (Acer saccharum)	15	0	0	0	0	0	0	0	0	0	15	0
Green Ash (Fraxinus pennsylvanica)	0	12	0	0	0	0	0	0	0	0	0	0
Total Number of Trees	46	17	0	0	0	0	0	0	0	0	46	0

Tree Inventory
Tree Invent

ORANGE Iabes.
Pressention or 19 trees, thee polyon reatures, and the exsing woodolot will be

 P Pan Noles tor prosesvaion deala

LEGEND

Tree Inventory
Rell
 Tree Removals
 Tree Preservatio

 Com tudio TLA
20 Champlain Blvd. | North York| Ontario | M3Н 221

Milton Porta Lands

Milton | Ontario
Existing Conditions, Proposed Site Plan,
Tree Tree Inventory \& Preservation Plan
Poject P2375
Date 06 April 202
1:800

Tree Inventory

subied properies and
theinemorn
Tree Removals

Ter
 Tree Preservatio

 cient
Studio TLA
20 Champlain Blvd. I North York। Ontario | M 3 H 221

Milton Porta Lands

Milton \mid Onaraio
Existing Conditions, Proposed Site Plan, Tree Inventory \& Preservation Plan
Project P2375
Date 06 April 2021

EGEND
ree Inventory

No.	Issuerevesisions	Date	
	Reons sumbsom	28 ¢0, 20	
	Aneammes	Oature 20	
	Reoon easums	19.0	
	Reoonteem		
		1004920	
		${ }_{5}$	
	KUNTZ FORESTRY CONSULTING Inc.		

${ }^{\text {comem }}$ Studio TLA

20 Champlain Bivd. I North York 1 Ontario | M3H 22

Proaen ${ }^{\text {Milton }}$ Porta Lands

Milton | Ontario
Existing Conditions, Proposed Site Plan Tree Inventory \& Preservation Plan
Project P2375
Date 06 April 2021

