The Regional Municipality of Halton 1151 Bronte Road Oakville ON L6M 3L1

Dear Sir/Madam:

Re: Water Usage and Sanitary Discharge Report for < Development Name>, < Address>, Town of <>, File Number <>

Background

<0wner> proposes to construct a <> m² industrial/commercial/institutional building at <#> <street>, Lot <#> Con. <#> in the Town of <>. The site is currently vacant/occupied by a <description of current occupant>.

The site has an area of <> ha., of which <> ha. will be landscaped. The property will be developed in phases with the first phase proposed for <2007>.

Table 8.2.1.3 of the Ontario Building Code has been used to calculate water usage and sanitary discharge for occupant loadings. The <industry> requires/does not require water in the process and cooling water will/ will not be required.

(Note: if proposed use is not listed in the OBC Table 8.2.1.3 then water billing records from 3 similar operations can be submitted)

Water Usage

Phase 1

♦ Occupant Load	# l/cap/d x # employees
	$= \# m^3/d$
♦ Process Water	$\# m^3/d$
◆ Cooling Water	# m ³ /d
◆ Landscaping	$25.4 \text{ mm/m}^2/\text{week x } \# \text{m}^2$
	$= \# m^3/d$

Total water usage for Phase $1 = \# m^3/d$

Phase 2

◆ Occupant Load # 1/cap/d x # employees

Total water usage for Phase $2 = \# m^3/d$

Sanitary Discharge

Phase 1

♦ Occupant Load # 1/cap/d x # employees = $\# \text{ m}^3/\text{d}$ ♦ Process Water # m^3/d • Cooling Water # m^3/d

Total sanitary discharge for Phase $1 = \# m^3/d$

Phase 2

♦ Occupant Load # $1/cap/d \times \# employees$ = $\# m^3/d$ ♦ Process Water # m^3/d \$\psi Cooling Water # m^3/d

Total sanitary discharge for Phase $2 = \# m^3/d$

Yours truly,

<to be stamped and signed by a professional engineer>